Skip to main content

Comparison of Functions, Threads, Objects, Components, & Services

For example components can be optimized for better performance through a compiler, inside an interpreter, or from the outside via the environment. Whereas services can only be optimized via the environment. Rarely does a service have a very low-level interface for tuning internals.

Functions Threads Objects Components Services
 Locality  Same

Same

Different

Same

Different

Different Different
 Environment  Same Same Same

Same

Different

Different
 Overhead  Max Min Min

Min

Max

Distributed

Max

Distributed

 Speed   Very Fast IPC   Very Fast IPC   Fast IPC   Slow IPC   Very Slow IPC 
 Optimization  Compiler Compiler

Interpreter

 Environment 

Compiler

Interpreter

 Environment 

Environment
 Debugging  Min Long-term

Short-term

Long-term

Long-term Long-term

Do you have a suggestion about how to improve this blog? Let's talk about it. Contact me at David.Brenner.Jr@Gmail.com or 720-584-5229.

Comments

Popular posts from this blog

Network traffic monitoring in Linux with Python

You can investigate suspicious activity in your network traffic by collecting relevant machine data from your endpoint. You can use the machine data to create your own analysis. Before you start your investigation you will need to determine normal activity on your endpoint. Normal activity is the scope of functionality of the software on your endpoint during periods of low activity and high activity. You will need some kind of software that periodically collects specific machine data from your endpoint like my software developed in Python that's available for free download at https://github.com/davidbrennerjr/server-stats-collector Ingest one or more of the following machine data: Application specific logs from /var/log Raw dumps from sniffing at Layers 2-3 Raw dumps from /proc of kernel data structures Raw dumps of kernel routing tables General system-wide error messages from /var/log/syslog Do you

OpenStack+Ceph as Software-Defined Storage

SDS reduces the costs of the management of growing data stores by decoupling storage management from its hardware to allow for centralized management of cheaper, popular commodity hardware. The example SDS ecosystem uses open source software like OpenStack as a front-end interface on top of Ceph as the resource provider of a RADOS cluster of commodity solid-state drives. OpenStack provides user-friendly wrappers for accessing and modifying underlying Ceph storage. OpenStack comes in the form of distributed microservices with RESTful API's: Block (Cinder), File (Manila), Image (Glance), and Object (Swift). Each microservice can scale-out as a cluster of stand-alone services to accommodate the varying demands of high-growth storage. With OpenStack the underlying Ceph storage can address the block storage needs, file storage needs, image storage needs, and object storage needs of datacenters adopting open source as their new norm in an industry trend for high performace and high a

Application behavior monitoring in Linux with Python

You can monitor application behaviors by collecting relevant machine data from your endpoint. You can use the machine data to investigate suspicious activity and create your own analysis. Before you start your investigation you will need to determine normal activity on your endpoint. Normal activity is the scope of functionality of the software on your endpoint during periods of low activity and high activity. You will need some kind of software that periodically collects specific machine data from your endpoint like my software developed in Python that's available for free download at https://github.com/davidbrennerjr/server-stats-collector Ingest one or more of the following machine data from Category #1. Ingest one or more of the following machine data from Category #2. Category #1 General system-wide error messages from /var/log/syslog Auditing logs of application rulesets Auditing logs of security contexts Auditing logs of