Skip to main content

What are network attacks?

Network attacks can be divided into two main categories, active attacks and passive attacks. Active attacks involve a malicious actor actively manipulating the design of a network in order to exploit some sort of vulnerability in a targeted endpoint. Active attacks involve things like packet generation, code injection, man-in-the-middle, and denial of service.

Passive attacks involve a malicious actor staying hidden while reading and saving information of interest exchanged by various nodes on a network. Passive attacks include things like traffic analysis, traffic sniffing, and key logging.

Active Attacks

Packet Generation: Replay Attack, Masquerading

Code Injection: 0-day Attack, Malware, Spyware, Phishing

Packet Alteration: Man-In-The-Middle, Session Hijacking

Service Compromise: Denial of Service, Distributed Denial of Service, SQL Injection

Passive Attacks

Eavesdropping & Interception: Traffic Analysis, Traffic Sniffing, Key Logging

Comments

Popular posts from this blog

Network traffic monitoring in Linux with Python

You can investigate suspicious activity in your network traffic by collecting relevant machine data from your endpoint. You can use the machine data to create your own analysis. Before you start your investigation you will need to determine normal activity on your endpoint. Normal activity is the scope of functionality of the software on your endpoint during periods of low activity and high activity. You will need some kind of software that periodically collects specific machine data from your endpoint like my software developed in Python that's available for free download at https://github.com/davidbrennerjr/server-stats-collector Ingest one or more of the following machine data: Application specific logs from /var/log Raw dumps from sniffing at Layers 2-3 Raw dumps from /proc of kernel data structures Raw dumps of kernel routing tables General system-wide error messages from /var/log/syslog Do you

Application behavior monitoring in Linux with Python

You can monitor application behaviors by collecting relevant machine data from your endpoint. You can use the machine data to investigate suspicious activity and create your own analysis. Before you start your investigation you will need to determine normal activity on your endpoint. Normal activity is the scope of functionality of the software on your endpoint during periods of low activity and high activity. You will need some kind of software that periodically collects specific machine data from your endpoint like my software developed in Python that's available for free download at https://github.com/davidbrennerjr/server-stats-collector Ingest one or more of the following machine data from Category #1. Ingest one or more of the following machine data from Category #2. Category #1 General system-wide error messages from /var/log/syslog Auditing logs of application rulesets Auditing logs of security contexts Auditing logs of

OpenStack+Ceph as Software-Defined Storage

SDS reduces the costs of the management of growing data stores by decoupling storage management from its hardware to allow for centralized management of cheaper, popular commodity hardware. The example SDS ecosystem uses open source software like OpenStack as a front-end interface on top of Ceph as the resource provider of a RADOS cluster of commodity solid-state drives. OpenStack provides user-friendly wrappers for accessing and modifying underlying Ceph storage. OpenStack comes in the form of distributed microservices with RESTful API's: Block (Cinder), File (Manila), Image (Glance), and Object (Swift). Each microservice can scale-out as a cluster of stand-alone services to accommodate the varying demands of high-growth storage. With OpenStack the underlying Ceph storage can address the block storage needs, file storage needs, image storage needs, and object storage needs of datacenters adopting open source as their new norm in an industry trend for high performace and high a